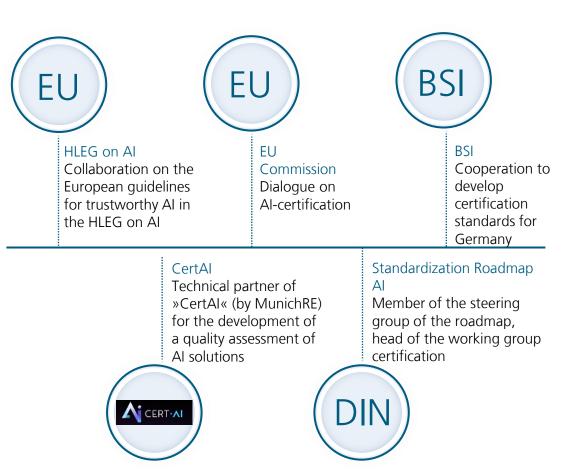


Assessing Al Trustworthiness -Necessity, Potential, or Illusion

© scheroret - stork adobe cr

Intelligent Systems that Work!

Fraunhofer IAIS – Artificial Intelligence, Machine Learning and Big Data from Bonn


- Research in the paradigm of »hybrid AI« in partnership with University of Excellence Bonn and HBRS
- National Competence Center Lamarr, PhenoRob Cluster of Excellence
- Comprehensive, immediately deployable, proven high-performance technology and IP portfolio
- Consulting, 24/7 implementation, software, licensing, innovation partnerships, trainings
- Customers and partners from DAX30 to medium-sized businesses
- Network management KI.NRW, Fraunhofer-Alliance Big Data and Artificial Intelligence, Al4Europe
- Particular focus on AI safeguarding and certification

350+ UNIVERSITÄT BONN **Researchers** 180 +KINRW **Research and industrial** projects per year Fraunhofer 20 +Years of experience AI4EU

BIG DATA AI

Our focus on Trustworthy Al

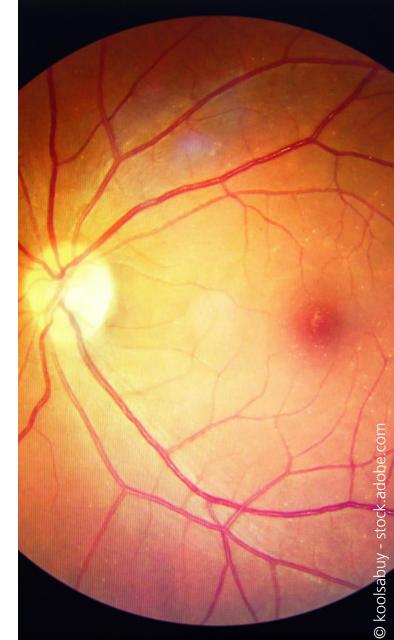
The importance of trust in
$$A_{j,k}^{[1]} = \sum_{q=1}^{k} \sum_{q=1}^{$$

Why is trustworthy Al important for your business?

Reliably generate business value

Sources-Icons: <u>https://nucleoapp.com/app/</u>

000

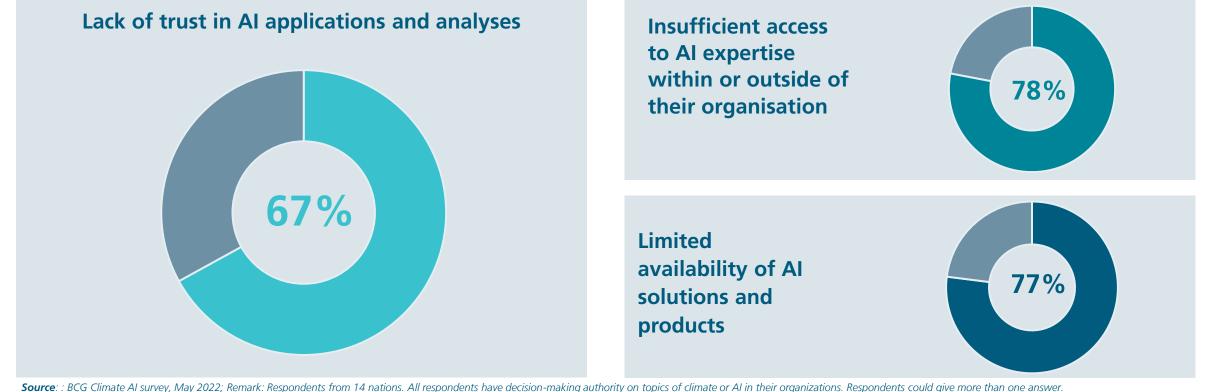

Lessons Learned: Diabetic retinopathy

Lab vs. Deployment

- Diagnostic system developed by Google AI, using image analysis with deep learning
- Accuracy at human expert level (more than 90%)
- System deployed for screening in Thailand in partnership with Ministry of Public Health
- Evaluation in 11 clinics in two provinces over eight months
 - High rejection rate of over 20% due to poor scans
 - Additional personnel resources consumed for retaking images or taking care of patients
 - Significant delays due to cloud-based processing

[Beede et.al, CHI 2020]

https://dl.acm.org/doi/abs/10.1145/3313831.3376718, https://www.technologyreview.com/2020/04/27/1000658/google-medical-ai-accurate-lab-real-life-clinic-covid-diabetes-retinadisease/

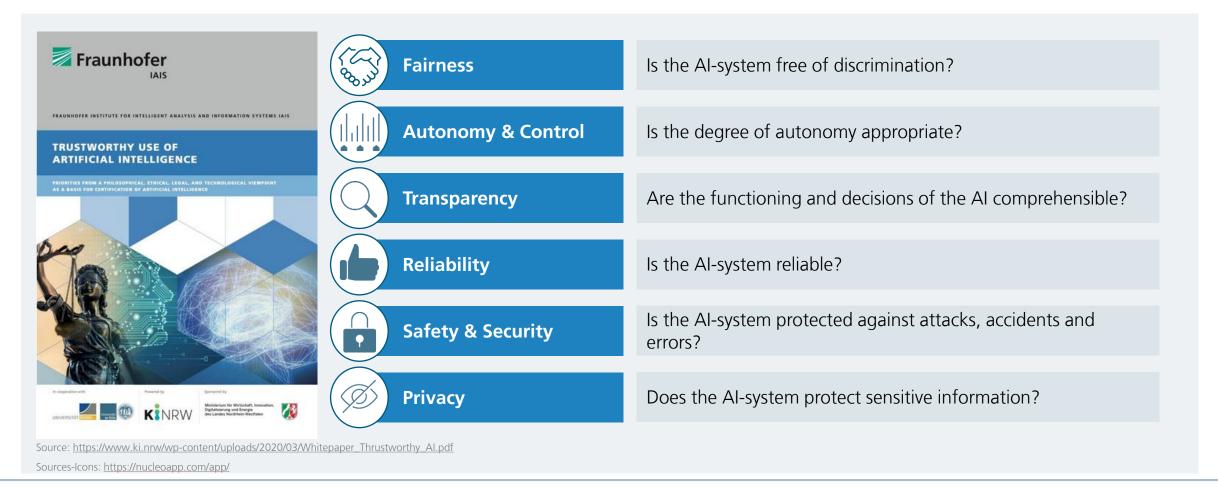


Lack of trust in AI as a top 3 obstacle to its deployment

The major obstacles to deployment of AI (answers of respondents, %)

1.005 international managers from public and private sectors respond

Why is trustworthy AI important for your business?



Fraunhofer

Sources-Icons: <u>https://nucleoapp.com/app/</u>

High Expectations

Al use in companies must meet societal expectations

Why is trustworthy Al important for your business?

Seite 10 09.01.2023 © Fraunhofer IAIS

Building trust through a legal framework on AI

Upcoming regulation at the European level: AI Act

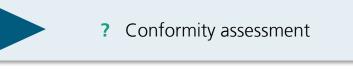
Proposal for regulation by the EU Commission

Initiation: 2021 proposed by the EU Commission

Goal: Regulate AI harmonized with European values to enable and enforce development of AI systems and ensure trust in AI systems

Current Status: EU Parliament and Council are negotiating the draft within their institutions \rightarrow next step: trilogue negotiations

Risk based approach:


Level	Description of AI system	Regulation	Example
Unacceptable	Contravening Union values (e.g., fundamental rights)	Prohibited	Al-based social scoring
High-Risk	High risk to the health and safety or fundamental rights of natural persons	Conformity assessment with specific rules required	Candidate selection
Limited	Interaction with humans, detection of emotion or association based on biometric data, deep fakes	Transparency obligations	Chat bots
Minimal	Represent only minmal or no risk for citizens or safety	No regulation	Spam filter

Sources-Icons: https://nucleoapp.com/app/

High-risk systems

Strong requirements expected

💻 Registration in database

2

Declaration of conformity

Requirements for High-Risk AI SystemsArticle 9: Risk management system

Article 10: Data and data governance Article 11: Technical documentation Article 12: Record-keeping obligation Article 13: Transparency and provision of information Article 14: Human supervision

Article 15: Accuracy, robustness, cybersecurity

Examples for partly affected areas (according to current status of the proposal):

Biometric identification and categorisation of natural persons © peach_fotolia - stock.adobe.com

....

How to make sure your Al is trustworthy
$$e^{\frac{dQ_{m}}{de} - eQ_{m-1}} (4) y^{k-1} \frac{x}{ds} = \frac{1}{2e} \int_{e^{-\frac{1}{2}}} \frac{x}{ds} \int_{e^{-\frac{1}{2}}} \frac{1}{2e^{-\frac{1}{2}}} \frac{1}{2e^{-\frac{1}{2}}} \int_{e^{-\frac{1}{2}}} \frac{1}{2e^{-\frac{1}{2}}} \int_{e^{-\frac{2$$

German standardization roadmap on AI

Two editions as implementation measure of the German government's AI strategy

Image Source: DIN

- Development of a framework for action for standardization
- Section on **AI certification**:
 - Testing framework that guarantees comparability of assessments
 - **Criteria framework** that operationalize trustworthiness requirements and map AI-specific challenges

Al suitability of norms

Review of existing norms and standards with regards to their compatibility concerning the use of AI

> 30.000 norms are being reviewed for their AI readiness

- Identification of content-related connections of relevant norms to AI and need for revision
- Support of technical feasibility of norms
- Contributions of Fraunhofer IAIS:
 - Refining the terms »AI suitability« and »AI relevance«
 - Identification of general categories of norms
 - Development of a prototypical AI tool for machine supported assessment of norms for AI suitability
- Project term 01/2022 12/2023

Al suitable set of standards as basis for development and use of high-quality and trustworthy Al

Project partners:

DIN Beuth Verlag **DIN Software**

Fraunhofer IAIS

Gefördert durch:

Bundesministerium für Wirtschaft und Klimaschutz

aufgrund eines Beschlusses des Deutschen Bundestages

Organizational trust through management systems

Governance, management and technical-organizational measures for AI

Trustworthy Artificial Intelligence

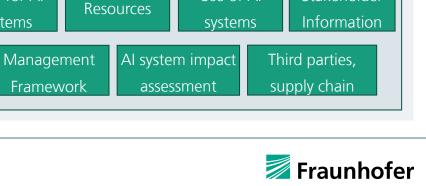
Comparative Study of AIMS-Standard with essential AI-guidelines:

- Proposal for EU-AI ACT (EU Commission)
- Assessment List for Trustworthy AI (HLEG)
- AIC4-Katalog (BSI)

Scope and design Control and development components components Context Plan Implement Leadership Support Measure Learn

Controls

Data for AI


systems

Policies

Al system

lifecycle

Structure of » AIMS«-Standard

Use of Al

Stakeholder

Fraunhofer AI Assessment Catalog

Guidelines for a structured evaluation of AI to develop trustworthy AI

Step 1: Risk analysis

 Comprehensive risk analysis along the dimensions of fairness, autonomy and control, transparency, reliability, safety and security and data protection

Step 2: Definition of targets

 Definition of objectives and - preferably measurable - target criteria to mitigate the risks identified in step 1

Step 3: Documentation of measures

 Guidance to systematically list measures along the lifecycle of the AI application to achieve the targets set in step 2

Step 4: Assurance argumentation

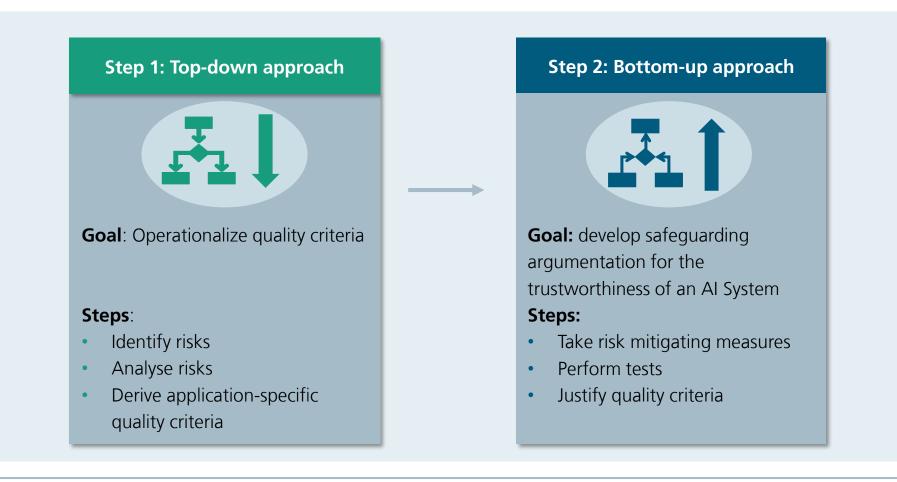
 Guidance to develop a stringent argumentation based on the measures of step 3 to demonstrate that the objectives formulated in step 2 have been achieved

Assessment Catalog is freely available at:

<u>https://www.iais.fraunhofer.de/de/forschung/kuenstliche-intelligenz/ki-pruefkatalog.html</u> (English version is in preparation)

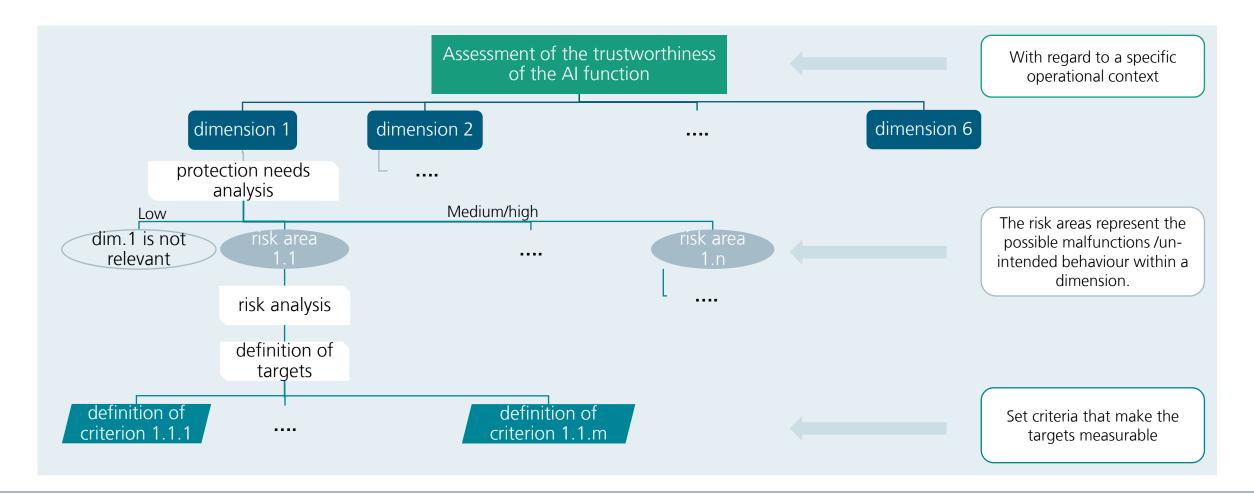
Areas of Application

The Assessment Catalog supports

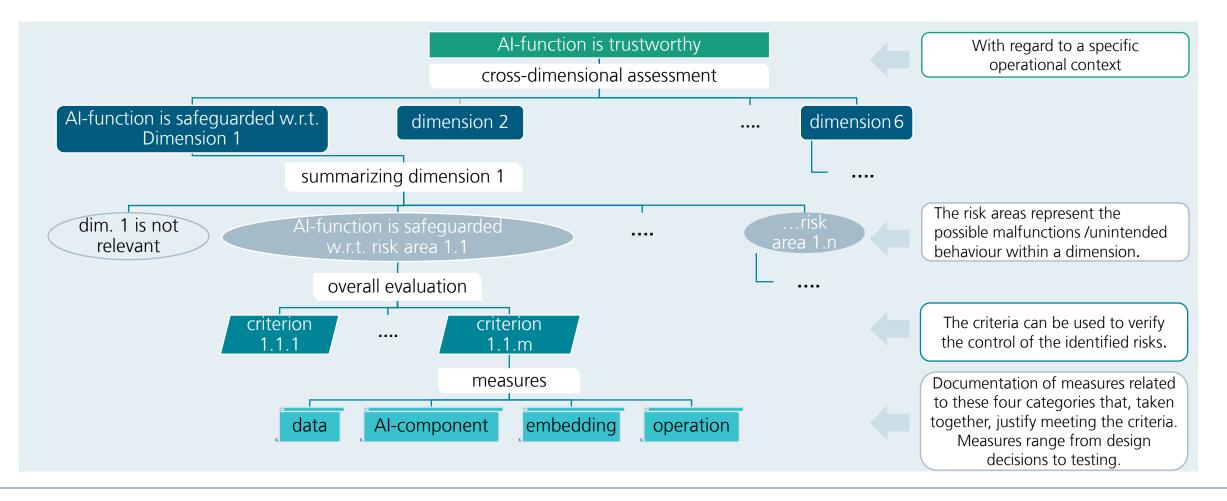

- Developers in the design and
- Al assessors in the evaluation and quality assurance

of AI applications.

Logic of the assessment procedure


Fraunhofer AI Assessment Catalog

Top-down Approach with Risk Analysis for specific Use Case


Fraunhofer AI Assessment Catalog

Bottom-up approach for creating a safeguarding argumentation

Fraunhofer AI Assessment Catalog

Sample Project: Synthetic Media Generation

Assessment of a proof-of-concept for AI-based generation of football reports for a media company

- Innovation project of a large media company: AI-based generation of texts for football reports
 - Support for journalists for faster publishing
 - Use of real-time match data for the generation of perspective summaries of matches
- Assessment of trustworthiness of the demonstrator
 - Focus: Reliability, transparency, autonomy & control
 - Identification of risks and weaknesses
 - Requirements and recommendations for assurance of trustworthiness in the use of synthetic media

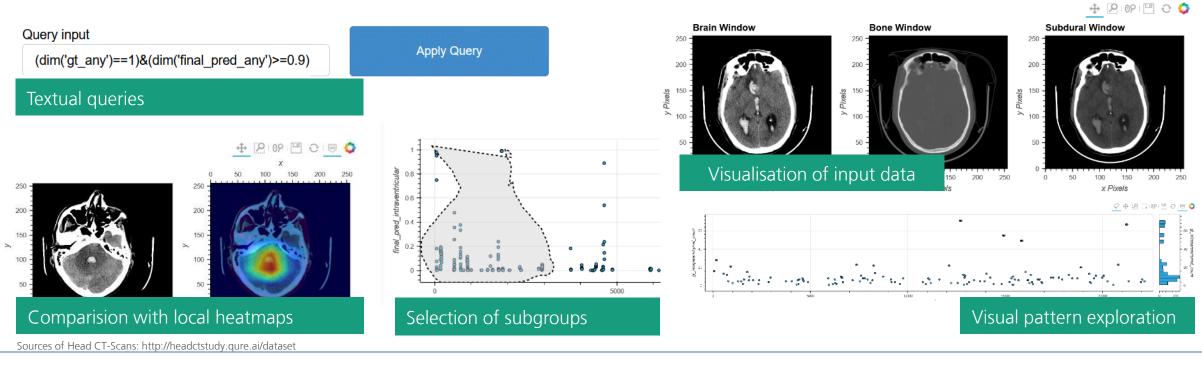
Sample project: AI assessment service for Munich Re

Assessment service CertAI aims to increase acceptance of AI

Munich Re is building a new business area for quality assessment of AI solutions under the brand of »CertAI« – Fraunhofer IAIS is the technology partner

- Subject of the assessment are fully developed or already actively deployed AI systems
- Two assessment dimensions: Assessment of the process and assessment of the product. The results are a quality seal and a detailed assessment report
- Assessment service based upon the Fraunhofer IAIS »AI Assessment Catalog«
- Fraunhofer IAIS assists Munich Re with technical product assessments

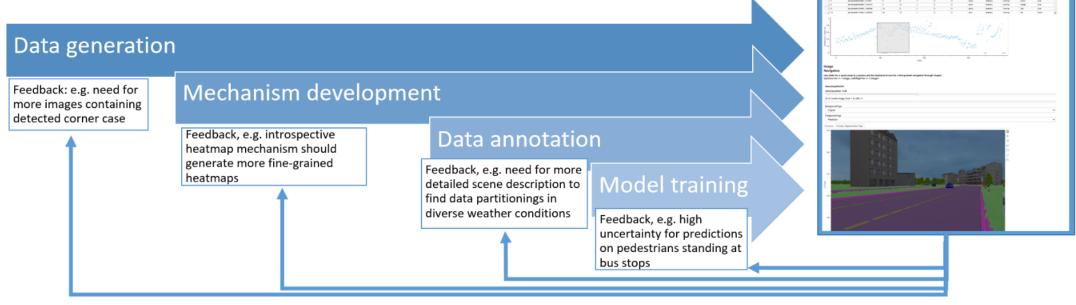
Fraunhofer IAIS Assessment Catalog sets standards for AI product assessments on the market


https://www.certai.com/en.html

Tool support for assessment

Semantic Analysis of DNN Predictions with Visual Analytics

# slice_id	ct_id	slice_number	position_z	gt_any	gt_epidural	gt_intraparenchyma	l gt_intraventricular	gt_subarachnoid	gt_subdural	final_pred_any	final_pred_epdiural	final_pred_intraparenchymal		atadata	
0 CQ500-CT-0_CT000028	CQ500-CT-0	0	-11.702	0	0	0	0	0	0	0.000707	0.000107	0.000181	Display metadata		
1 CQ500-CT-0_CT000029	CQ500-CT-0	1	-6.64	0	0	0	0	0	0	0.000635	0.000066	0.00014	0.000115	0.000232	0.000387
2 CQ500-CT-0_CT000026	CQ500-CT-0	2	-1.577	0	0	0	0	0	0	0.000826	0.000064	0.000149	0.000143	0.000237	0.000456
3 CQ500-CT-0_CT000025	CQ500-CT-0	3	3.485	0	0	0	0	0	0	0.001137	0.000067	0.00018	0.000157	0.000278	0.000615
4 CQ500-CT-0_CT000012	CQ500-CT-0	4	8.548	0	0	0	0	0	0	0.00239	0.000092	0.000287	0.000251	0.000416	0.001105


Semantic Analysis of DNN Predictions with Visual Analytics

Establishing a feedback loop

Development of a visual interactive interface

Inspection of **DNN predictions** and **data sets** w.r.t. pre-computed **meta data (semantics)**

Interactive, Modular, Extensible -> Feedback loop between data generation, DNN training and analyses

Reference: Haedecke et. al "ScrutinAI: A Visual Analytics Approach for the Semantic Analysis of Deep Neural Network Predictions", EuroVA 2022.

E3.6.5 VA interactive image data set inspection

Assessing Al Trustworthiness -Necessity, Potential, or Illusion

© scheroret - stork adobe cr